contestada

the surface area of a pyramid is 85 square meters the side length of the base is 5 meters what is the slant height

Respuesta :

Answer:

6 meters

Step-by-step explanation:

[tex]A=a^2+2a\sqrt{\frac{a^2}{4}+h^2} [/tex]is the formula that you use

h=vertical altitude and

a=side length of the base

[tex]85=5^2+(2*5)\sqrt{\frac{25}{4}+h^2}[/tex]

[tex]85-25=10\sqrt{\frac{25}{4}+h^2}[/tex]

[tex]\frac{60}{10}=\sqrt{\frac{25}{4}+h^2}[/tex]

[tex]6=\sqrt{\frac{25}{4}+h^2}[/tex]

[tex]36=\frac{25}{4}+h^2[/tex]

[tex]36-\frac{25}{4}=h^2[/tex]

[tex]36-6.25=h^2[/tex]

[tex]29.75=h^2[/tex]

Vertical altitude (h) and [tex]\frac{1}{2}a[/tex] and the slant height form a right triangle with the slant height being the hypotenuse

[tex]h^2+(2.5)^2=s^2 [/tex]where s=slant height

[tex]29.75+6.25=s^2[/tex]

[tex]36=s^2[/tex]

s=6 meters

Answer:

slant height = 6 meters

Step-by-step explanation:

surface area of pyramid: 2bs + b²

2*5*s + 5² = 85

10s = 85 - 25

10s = 60

s = 6

The slant height is 6 meters.