Respuesta :
Answer:
6 meters
Step-by-step explanation:
[tex]A=a^2+2a\sqrt{\frac{a^2}{4}+h^2} [/tex]is the formula that you use
h=vertical altitude and
a=side length of the base
[tex]85=5^2+(2*5)\sqrt{\frac{25}{4}+h^2}[/tex]
[tex]85-25=10\sqrt{\frac{25}{4}+h^2}[/tex]
[tex]\frac{60}{10}=\sqrt{\frac{25}{4}+h^2}[/tex]
[tex]6=\sqrt{\frac{25}{4}+h^2}[/tex]
[tex]36=\frac{25}{4}+h^2[/tex]
[tex]36-\frac{25}{4}=h^2[/tex]
[tex]36-6.25=h^2[/tex]
[tex]29.75=h^2[/tex]
Vertical altitude (h) and [tex]\frac{1}{2}a[/tex] and the slant height form a right triangle with the slant height being the hypotenuse
[tex]h^2+(2.5)^2=s^2 [/tex]where s=slant height
[tex]29.75+6.25=s^2[/tex]
[tex]36=s^2[/tex]
s=6 meters
Answer:
slant height = 6 meters
Step-by-step explanation:
surface area of pyramid: 2bs + b²
2*5*s + 5² = 85
10s = 85 - 25
10s = 60
s = 6
The slant height is 6 meters.