=
5
6
Given the equation x2 + y2 + 20x + 12y + 111 0, write the standard
form equation in the form (z – h)2 + (y - k)2 = p2, and list the center
and radius. Show ALL WORK using the equation editor.
9
100
*For full credit you must have 3 things: All work with the standard form equation,
the center and the radius listed

Respuesta :

The equation in the given standard form is [tex](x+10)^2+(y+6)^2=5^2[/tex]

Equation of a circle

The standard equation of a circle is expressed as:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

Given the equation [tex]x^2 + y^2 + 20x + 12y + 111 =0[/tex]

Group the function to have:

[tex](x^2 +20x)+(y^2+ 12y) + 111 =0[/tex]

Complete the squares to have:

[tex](x^2 +20x)+(y^2+ 12y) + 111 =0\\(x^2+20x+10^2-10^2)+(y^2+12y+6^2-6^2)+111=0\\(x+10)^2+(y+6)^2 -100-36+111=0\\(x+10)^2+(y+6)^2-25=0\\(x+10)^2+(y+6)^2=25\\(x+10)^2+(y+6)^2=5^2[/tex]

Hence the equation in the given standard form is [tex](x+10)^2+(y+6)^2=5^2[/tex]

Learn more on equation of a circle here: https://brainly.com/question/1506955