Respuesta :

Answer:

  • E(5, 8)

Step-by-step explanation:

Let E has coordinates of x and y.

Use midpoint equation to find x and y:

  • 2 = 1/2( - 1 + x) ⇒ 4 = - 1 + x ⇒ x = 4 + 1 ⇒ x = 5
  • 7 = 1/2(6 + y) ⇒ 14 = 6 + y ⇒ y = 14 - 6 ⇒ y = 8

Answer:

E = (5, 8)

Step-by-step explanation:

Midpoint between two points

[tex]\textsf{Midpoint}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)[/tex]

Given:

[tex]\textsf{Midpoint}=(2,7)[/tex]

[tex]\textsf{Let endpoint }(x_1,y_1)=\textsf{Point D}=(-1,6)[/tex]

[tex]\textsf{Let endpoint }(x_2,y_2)=\textsf{Point E}=(x_E,y_E)[/tex]

Substitute the given values into the equation:

[tex]\begin{aligned}\textsf{Midpoint} & =\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\\\implies (2, 7) & =\left(\dfrac{x_E-1}{2},\dfrac{y_E+6}{2}\right)\\\end{aligned}[/tex]

Therefore, the x-coordinate of point E is:

[tex]\implies \dfrac{x_E-1}{2}=2[/tex]

[tex]\implies x_E-1=4[/tex]

[tex]\implies x_E=5[/tex]

The y-coordinate of point E is:

[tex]\implies \dfrac{y_E+6}{2}=7[/tex]

[tex]\implies y_E+6=14[/tex]

[tex]\implies y_E=8[/tex]

Therefore, point E is (5, 8).

Ver imagen semsee45