What is the simplified form of 24 y to the fifth power over 15 x to the eighth power divided by 8 y squared over 4 x to the fourth power?

Respuesta :

12 y cubed over 15 x to the sixth power

Answer:

[tex]\dfrac{4y^3}{5x^4}[/tex]

Step-by-step explanation:

We are given,

The expression is [tex]\dfrac{\dfrac{24y^5}{15x^8}}{\dfrac{8y^2}{4x^4}}[/tex].

Upon simplifying, we get,

[tex]\dfrac{\dfrac{24y^5}{15x^8}}{\dfrac{8y^2}{4x^4}}\\\\\\\dfrac{24y^5\times 4x^4}{15x^8\times 8y^2}}\\\\\\\dfrac{3y^3\times 4}{15x^4}}\\\\\\\dfrac{4y^3}{5x^4}}[/tex]

Thus, we have,

The simplified form of the given expression is [tex]\dfrac{4y^3}{5x^4}[/tex].