Angle A is in standard position and terminates in quadrant IV. If sec(A)=4 3 , complete the steps to find cot(A). Use the identity to find the value of (A).

Respuesta :

If sec(A) = 4/3, then the value cot(A) is [tex]cot(A)=\frac{3\sqrt{7}}{7}[/tex]

The given trigonometric identity is:

[tex]sec(A)=\frac{4}{3}[/tex].........................(*)

Note that:

[tex]sec(A)=\frac{Hypotenuse}{Adjacent}[/tex].........................(**)

Comparing (*)  and (**)

Hypotenuse = 4

Adjacent = 3

Find the opposite using the Pythagoras theorem

Hypotenuse²  =  Opposite²  +  Adjacent²

4²   =  Opposite²  +  3²

Opposite² = 4²  -  3²

Opposite²  =  16 - 9

Opposite² = 7

Opposite = √7

cot(A) = Adjacent/Opposite

cot(A) = 3/√7

Rationalize the expression

[tex]cot(A)=\frac{3\sqrt{7}}{7}[/tex]

Learn more here: https://brainly.com/question/25913087

Answer

1A=B 1B=tan 2=B 3=A

Step-by-step explanation: