Respuesta :
If sec(A) = 4/3, then the value cot(A) is [tex]cot(A)=\frac{3\sqrt{7}}{7}[/tex]
The given trigonometric identity is:
[tex]sec(A)=\frac{4}{3}[/tex].........................(*)
Note that:
[tex]sec(A)=\frac{Hypotenuse}{Adjacent}[/tex].........................(**)
Comparing (*) and (**)
Hypotenuse = 4
Adjacent = 3
Find the opposite using the Pythagoras theorem
Hypotenuse² = Opposite² + Adjacent²
4² = Opposite² + 3²
Opposite² = 4² - 3²
Opposite² = 16 - 9
Opposite² = 7
Opposite = √7
cot(A) = Adjacent/Opposite
cot(A) = 3/√7
Rationalize the expression
[tex]cot(A)=\frac{3\sqrt{7}}{7}[/tex]
Learn more here: https://brainly.com/question/25913087