Respuesta :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
roots of the quadratic equation ~
- [tex]2 \: \: \: \:a nd \: \: - 10[/tex]
discriminant ~
- [tex]144[/tex]
nature of roots ~
- [tex]real[/tex]
sum of the roots ~
- [tex] - 8[/tex]
product of the roots ~
- [tex] - 20[/tex]
[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
Let's solve he given quadratic equation using quadratic formula ~
Let's consider the following values ~
- b (Coefficient of x) = 8
- a (Coefficient of x²) = 1
- c (Constant term) = -20
According to quadratic formula, the roots are ~
- [tex] \dfrac{ - b \pm \sqrt{b {}^{2} - 4ac } }{2a} [/tex]
where, ( b² - 4ac ) is known as it's discriminant ~
that is equal to ~
- [tex](8) {}^{2} - (4 \times 1 \times - 20)[/tex]
- [tex]64 - ( - 80)[/tex]
- [tex]64 + 80[/tex]
- [tex]144[/tex]
Hence, Discriminant = 144
And since discriminant is positive, then the roots of the quadratic polynomial are real .
Let's find the roots now ~
- [tex] \dfrac{ - b \pm \sqrt{b {}^{2} - 4ac} }{2a} [/tex]
- [tex] \dfrac{ - 8 \pm \sqrt{144} }{2 \times 1}[/tex]
- [tex] \dfrac{ - 8 \pm12}{2} [/tex]
- [tex] \dfrac{ 2( - 4 \pm6)}{2} [/tex]
- [tex] - 4 \pm6[/tex]
So, the two roots are ~
- [tex] - 4 + 6[/tex]
- [tex]2[/tex]
and
- [tex] - 4 - 6[/tex]
- [tex] - 10[/tex]
Sum of roots ~
- [tex] - 10 + 2[/tex]
- [tex] -8[/tex]
product of roots ~
- [tex] - 10 \times 2[/tex]
- [tex] - 20[/tex]