After Gwen, Tristan, and Keith finish exercising, they go to the fair. At the fair, they each pay the entry fee and also buy tickets they can use for food or rides. Gwen pays the entry fee and buys 10 tickets. It costs her a total of $30. Tristan pays the entry fee and buys 15 tickets. It costs him a total of $40. Keith pays the entry fee and buys 10 tickets. It costs him a total of $30. In this task, you will create a system of equations and find the cost of each ticket. Let x represent the entry fee and y represent the cost of each ticket in dollars.

Part B
Write an equation representing how much Tristan paid.

Part C
Write an equation representing how much Keith paid.
Part E
Solve the system you found in Part D. Did you use elimination or substitution? What was the entry fee, and how much did each ticket cost?


Part F
What do you need to do to the equations so you can put them into the Graph tool? Put the equations into the Graph tool. To create the graph, select the correct relationship and then enter the values for the variables. Paste a screenshot of your graph in the space provided. Do you get the same solution as when you solved it algebraically?

Respuesta :

lipor

Answer:

Let x represents the entry fees

y represent the cost of each ticket

Gwen equation

x + 10y = 30 ... (i)

Tristan equation

x + 15y = 40 ...... (ii)

Keith equation

x + 10y = 30 .......... (iii)

By solving eq. (ii) and (iii), we get

x = 10

y = 2

Hence entry fees = $10

cost of each ticket = $2

PLEASE MARK ME AS BRAINLIEST AS IT WILL HELP ME IN ACHIEVING NEXT LEVEL.

THNX IN ADVANCE

Step-by-step explanation:

Answer:

Step-by-step explanation:

Let x represents the entry fees

y represent the cost of each ticket

Gwen equation

x + 10y = 30 ... (i)

Tristan equation

x + 15y = 40 ...... (ii)

Keith equation

x + 10y = 30 .......... (iii)

By solving eq. (ii) and (iii), we get

x = 10

y = 2

Hence entry fees = $10

cost of each ticket = $2