Profit is revenue minus cost. Find the profit if the cost of producing x units of a commodity is
130+25x and the revenue for selling them is x(88-X).​

Respuesta :

Answer:

[tex]-x^2+63x-130[/tex]

Step-by-step explanation:

When you put that into an equation:

[tex]x(88-x)-(130+25x)[/tex]

Next, solve.

[tex]\mathrm{Apply\:the\:distributive\:law}:\quad \:-\left(a+b\right)=-a-b[/tex]

[tex]-\left(130+25x\right)=-130-25x[/tex]

[tex]=x\left(88-x\right)-130-25x[/tex]

[tex]x(88-x):88x-x^2[/tex]

[tex]=88x-x^2-130-25x[/tex]

[tex]88x-x^2-130-25x =-x^2+63x-130[/tex]

Therefore, the profit if the cost of producing [tex]x[/tex] units is [tex]-x^2+63x-130[/tex], and there may be restrictions depending on conditions.