[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
let's solve for value of (2/2-√5 - 2/2+√5) :
- [tex] \dfrac{2}{2 - \sqrt{5} } - \dfrac{2}{2 + \sqrt{5} } [/tex]
- [tex] \dfrac{2(2 + \sqrt{5} ) - 2(2 - \sqrt{5} )}{ {2}^{2} - 5} [/tex]
- [tex] \dfrac{4 + 2 \sqrt{5} - 4 + 2 \sqrt{5} }{4 - 5}[/tex]
- [tex] \dfrac{4 \sqrt{5} }{ - 1} [/tex]
- [tex] - 4 \sqrt{5} [/tex]
now, let's simply the ratio :
- [tex] - 4 \sqrt{5} : \sqrt{20} [/tex]
- [tex] \dfrac{ - 4 \sqrt{5} }{ \sqrt{20} } [/tex]
- [tex] \dfrac{ - 4}{ \sqrt{4} } [/tex]
- [tex] - \sqrt{4} [/tex]
Therfore , the required ratio is :
- [tex] - \sqrt{4} :1[/tex]