Respuesta :

Answer:

[tex]-\frac{4}{7} -\frac{8}{7} i\sqrt{5}[/tex]

Step-by-step explanation:

To rationalize the denominator, we would have to multiply by the complex conjugate of 6 + 2i√5 which is 6 - 2i√5:

[tex]\frac{8-8i\sqrt{5} }{6+2i\sqrt{5} } *\frac{6-2i\sqrt{5} }{6-2i\sqrt{5} }[/tex]

The denominator resembles the difference of squares:

6^2 - (2i√5)^2

36 + 20

56

Next we would need to multiply the numerator, but before, notice we can factor out 8 from 8 - 8i√5:

[tex]\frac{8(1-i\sqrt{5})(6-2i\sqrt{5}) }{56}[/tex]

We can cancel that 8 with that 56 in the denominator:

[tex]\frac{6-2i\sqrt{5}-6i\sqrt{5}-10}{7}[/tex]

This simplifies to:

[tex]\frac{-4-8i\sqrt{5} }{7}[/tex]

which is the same as:

[tex]-\frac{4}{7} -\frac{8}{7} i\sqrt{5}[/tex]