Respuesta :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
We know that mid - point of a line segment divides it into two equal parts, that is it divides the segment in the ratio of 1 : 1, so let's find the coordinates of the mid point of line segment joining points (-9 , 3) and (5 , 7).
let the coordinates of the points be x and y, now
- [tex]m = 1[/tex]
- [tex]n = 1[/tex]
- [tex]x_2 = 5[/tex]
- [tex]x_1 = - 9[/tex]
- [tex]y_2 = 7[/tex]
- [tex]y_1 = 3[/tex]
Using section formula :
value of x :
- [tex]x = \dfrac{mx_2 - nx_1}{m + n} [/tex]
- [tex]x = \dfrac{(1 \times 5) - (1 \times - 9)}{1 + 1} [/tex]
- [tex]x = \dfrac{5 - ( - 9)}{2} [/tex]
- [tex]x = \dfrac{5 + 9}{2} [/tex]
- [tex]x = \dfrac{14}{2} [/tex]
- [tex]x = 7[/tex]
value of y :
- [tex]y = \dfrac{my_2 -ny_1 }{m+ n} [/tex]
- [tex]y = \dfrac{(1 \times 7) - (1 \times 3)}{1 + 1} [/tex]
- [tex]y = \dfrac{7 - 3}{2}[/tex]
- [tex]y = \dfrac{4}{2} [/tex]
- [tex]y = 2[/tex]
So, coordinates of the point which is midpoint of the given line is :
[tex] \boxed{ \boxed{ (7, 2)}}[/tex]