contestada

Suppose an electron is trapped within a small region and the uncertainty in its position is 24.0 x 10-15 m. What is the minimum uncertainty in the electron's momentum

Respuesta :

Answer:

  • Uncertainty in position (∆x) = 24 × 10⁻¹⁵ m
  • Uncertainty in momentum (∆P) = ?
  • Planck's constant (h) = 6.26 × 10⁻³⁴ Js

[tex]\longrightarrow \: \: \sf\Delta x .\Delta p = \dfrac{h}{4\pi} [/tex]

[tex]\longrightarrow \: \: \sf24 \times {10}^{ - 15} .\Delta p = \dfrac{6.26 \times {10}^{ - 34}} {4 \times \frac{22}{7} } [/tex]

[tex]\longrightarrow \: \: \sf24 \times {10}^{ - 15} .\Delta p = \dfrac{6.26 \times {10}^{ - 34}} { \frac{88}{7} } [/tex]

[tex]\longrightarrow \: \: \sf24 \times {10}^{ - 15} .\Delta p = \dfrac{6.26 \times {10}^{ - 34} \times 7} { 8 } [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{43.82 \times {10}^{ - 34} } { 8 \times 24 \times {10}^{ - 15} } [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{43.82 \times {10}^{ - 34} } { 192 \times {10}^{ - 15} } [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{43.82 \times {10}^{ - 34} \times {10}^{15} } { 192} [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{43.82 \times {10}^{ -19} } { 192} [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{4382 \times {10}^{ - 2} \times {10}^{ -19} } { 192} [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = \dfrac{4382 \times {10}^{ - 21} } { 192} [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = 22.822\times {10}^{ - 21} [/tex]

[tex]\longrightarrow \: \: \sf\Delta p = 2.2822 \times {10}^{1} \times {10}^{ - 21} [/tex]

[tex]\longrightarrow \: \: \underline{ \boxed{ \red{ \bf\Delta p = 2.2822 \times {10}^{ - 20} \: kg/ms}}}[/tex]

Otras preguntas