Respuesta :

30.8 m

Step-by-step explanation:

Given: [tex]V = 43\:\text{m}[/tex], [tex]V_y = 30\:\text{m}[/tex]

The x-component of vector [tex]\vec{\text{V}}[/tex] is

[tex]V_x = \sqrt{V^2 - V_y^2} = \sqrt{(43)^2 - (30)^2} = 30.8\:\text{m}[/tex]

The x- component of the vector is 30.8meters.

What is the magnitude and direction of vector?

If [tex]v = < a. b >[/tex] be a position vector then the magnitude of vector v is found by  [tex]|v| =\sqrt{a^{2}+b^{2} } }[/tex] , where a and b are the x and y component respectively.

And the direction is equals to the angle formed x- axis or y axis.

According to the given question

We have

Magnitude of the vector, |v| = 43meters

Y- component of the vector, b = 30meters

Since, we know that

[tex]|v| =\sqrt{a^{2} +b^{2} }[/tex]

Substitute the value of |v| = 43 and b = 30 in the above formula of magnitude.

⇒ [tex]43 = \sqrt{a^{2}+30^{2} }[/tex]

⇒ [tex]43 = \sqrt{a^{2}+900 }[/tex]

⇒ [tex]43^{2} =a^{2} + 900[/tex]

⇒ [tex]1849 = a^{2} + 900[/tex]

⇒ [tex]1849-900=a^{2}[/tex]

⇒ [tex]949=a^{2}[/tex]

⇒ [tex]a =\sqrt{949}[/tex]

⇒ [tex]a = 30.8[/tex]

Hence, the x- component of the vector is 30.8meters.

Learn more about magnitude and direction of a vector here:

https://brainly.com/question/13134973

#SPJ2