Respuesta :

Answer:

252 ways

Step-by-step explanation:

The missing details are:

[tex]n = 10[/tex] --- total restaurants

[tex]r = 5[/tex] --- restaurants to visit

Required

The number of ways to perform the visitation

The question is an illustration of combination;

So, we have:

[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]

This gives:

[tex]^{10}C_5 = \frac{10!}{(10 - 5)!*5!}[/tex]

[tex]^{10}C_5 = \frac{10!}{5!*5!}[/tex]

Expand

[tex]^{10}C_5 = \frac{10*9*8*7*6*5!}{5!*5*4*3*2*1}[/tex]

Cancel out 5!

[tex]^{10}C_5 = \frac{10*9*8*7*6}{5*4*3*2*1}[/tex]

[tex]^{10}C_5 = \frac{30240}{120}[/tex]

[tex]^{10}C_5 = 252[/tex]