Respuesta :

Explanation:

Given:

[tex]A_1[/tex] = 4.5 cm[tex]^2[/tex]

[tex]v_1[/tex] = 40 cm/s

[tex]v_2[/tex] = 90 cm/s

[tex]A_2[/tex] = ?

a) The continuity equation is given by

[tex]A_1v_1 = A_2v_2[/tex]

Solving for [tex]A_2[/tex],

[tex]A_2 = \dfrac{v_1}{v_2}A1 = \left(\dfrac{40\:\text{cm/s}}{90\:\text{cm/s}}\right)(4.5\:\text{cm}^2)[/tex]

[tex]= 2\:\text{cm}^2[/tex]

b) If the cross-sectional area is reduced by 50%, its new area [tex]A_2'[/tex] now is only 1 cm^2, which gives us a radius of

[tex]r = \sqrt{\dfrac{A_2'}{\pi}} = 0.564\:\text{cm}[/tex]