Find the probability of 3 success for the binomial experiment with 7 trial and the success probability of 0.3. Then find the mean and standard deviation. Write the formula substitute
the values.

Respuesta :

Answer:

[tex]P(x=3)=0.2269[/tex]

Mean=2.1

Standard deviation=1.21

Step-by-step explanation:

We are given that

n=7

Probability of success, p=0.3

q=1-p=1-0.3=0.7

We have to find the probability of 3 success for the binomial experiment  and find the mean and standard deviation.

Binomial distribution formula

[tex]P(X=x)=nC_xp^{x}q^{n-x}[/tex]

Using the formula

[tex]P(x=3)=7C_3(0.3)^3(0.7)^{7-3}[/tex]

[tex]P(x=3)=7C_3(0.3)^3(0.7)^{4}[/tex]

[tex]P(x=3)=\frac{7!}{3!4!}(0.3)^3(0.7)^{4}[/tex]

[tex]P(x=3)=\frac{7\times 6\times 5\times 4!}{3\times 2\times 1\times 4!}(0.3)^{3}(0.7)^{4}[/tex]

Using the formula

[tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]

[tex]P(x=3)=0.2269[/tex]

Now,

Mean, [tex]\mu=np=7\times 0.3=2.1[/tex]

Standard deviation, [tex]\sigma=\sqrt{np(1-p)}[/tex]

Standard deviation, [tex]\sigma=\sqrt{7\times 0.3\times 0.7}[/tex]

Standard deviation, [tex]\sigma=1.21[/tex]