Respuesta :

[tex]\large\mathfrak{{\pmb{\underline{\blue{To\:find}}{\blue{:}}}}}[/tex]

The value of [tex]x[/tex].

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\longrightarrow{\green{x=12° }}[/tex] 

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

We know that,

[tex]\sf\pink{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]

➪ 95° + (3[tex]x[/tex] +4)° + (4[tex]x[/tex] - 3)° = 180°

➪ 3[tex]x[/tex] + 4[tex]x[/tex] + 95° + 4° -3° = 180°

➪ 7[tex]x[/tex] + 96° = 180°

➪ 7[tex]x[/tex] = 180° - 96°

➪ 7[tex]x[/tex] = 84°

➪ [tex]x[/tex] = [tex]\frac{84°}{7}[/tex]

➪ [tex]x[/tex] = 12°

Therefore, the value of [tex]x[/tex] is 12°.

Now, the three angles of the triangle are 95°, 40° and 45° respectively.

[tex]\large\mathfrak{{\pmb{\underline{\purple{To\:verify}}{\purple{:}}}}}[/tex]

✒ 95° + 40° + 45° = 180°

✒ 180° = 180°

✒ L. H. S. = R. H. S.

[tex]\boxed{Hence\:verified.}[/tex]

hope this helps! feel free to clarify
Ver imagen niclahhh