Translate the triangle. Then enter the new coordinates. A(-3, 4) A'([?], [?]) B'([ ], [ ] C([],[]) B(0, 1) C(-4,1)
or

Answer:
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
Step-by-step explanation:
Vectorially speaking, the translation of a point can be defined by the following expression:
[tex]V'(x,y) = V(x,y) + T(x,y)[/tex] (1)
Where:
[tex]V(x,y)[/tex] - Original point.
[tex]V'(x,y)[/tex] - Translated point.
[tex]T(x,y)[/tex] - Translation vector.
If we know that [tex]A(x,y) = (-3,4)[/tex], [tex]B(x,y) = (0,1)[/tex], [tex]C(x,y) = (-4,1)[/tex] and [tex]T(x,y) = (6, -4)[/tex], then the resulting points are:
[tex]A'(x,y) = (-3, 4) + (6, -4)[/tex]
[tex]A'(x,y) = (3, 0)[/tex]
[tex]B'(x,y) = (0,1) + (6, -4)[/tex]
[tex]B'(x,y) = (6, -3)[/tex]
[tex]C'(x,y) = (-4, 1) + (6, -4)[/tex]
[tex]C'(x,y) = (2, -3)[/tex]
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].