Respuesta :

Answer:

Step-by-step explanation:

sin²β + sin²β×tan²β = tan²β

sin²β( 1 + tan²β ) = tan²β

~~~~~~~~~~~~~~~~

sin²β + cos²β = 1  

[tex]\frac{sin^2\beta }{cos^2\beta }[/tex] + [tex]\frac{cos^2\beta }{cos^2\beta }[/tex] = [tex]\frac{1}{cos^2\beta }[/tex] ⇒ tan²β + 1 = sec²β ⇔ 1 + tan²β = sec²β

~~~~~~~~~~~~~~

1 + tan²β = [tex]\frac{1}{cos^2 \beta }[/tex]

L.H. = sin²β ( [tex]\frac{1}{cos^2 \beta }[/tex] ) = tan²β

R.H. = tan²β