Respuesta :

Answer:

given function has 2 minimums - [tex]\frac{9}{4}[/tex]  and  [tex]\frac{9}{4}[/tex]  

Step-by-step explanation:

Step 1. g'(x) = 4x³ - 10x

Step 2. Find find the critical points:

4x³ - 10x = 2x(2x² - 5) = 0

[tex]x_{1}[/tex] = - [tex]\sqrt{\frac{5}{2} }[/tex] , [tex]x_{2}[/tex] = 0 , [tex]x_{3}[/tex] = [tex]\sqrt{\frac{5}{2} }[/tex]

Step 3. g'(x) > 0 :  - [tex]\sqrt{\frac{5}{2} }[/tex] < x < 0  or  x > [tex]\sqrt{\frac{5}{2} }[/tex]

g'(x) < 0 :   x < - [tex]\sqrt{\frac{5}{2} }[/tex]   or   0 < x < [tex]\sqrt{\frac{5}{2} }[/tex]

Step 4.

If x ∈ ( - ∞ , - [tex]\sqrt{\frac{5}{2} }[/tex] ) , g(x) is decreasing ;

If x = - [tex]\sqrt{\frac{5}{2} }[/tex] , g(x) has minimum value ;

If x ∈ ( - [tex]\sqrt{\frac{5}{2} }[/tex] , 0 ) , g(x) is increasing ;

If x = 0 , g(x) has maximum value ;

If x ∈ ( 0 , [tex]\sqrt{\frac{5}{2} }[/tex] ) , g(x) is decreasing ;

If x = [tex]\sqrt{\frac{5}{2} }[/tex] , g(x) has minimum value ;

If x ∈ ( [tex]\sqrt{\frac{5}{2} }[/tex] , ∞ ) , g(x) is increasing .

⇒ at ( - [tex]\sqrt{\frac{5}{2} }[/tex] , - [tex]\frac{9}{4}[/tex] ) and at ( [tex]\sqrt{\frac{5}{2} }[/tex] , [tex]\frac{9}{4}[/tex] ) , g(x) reaches its minimum