Respuesta :

Answer:

[tex]\text {The \ area \ of \ the \ shaded \ segment, A} = 3 \cdot \pi - \dfrac{9}{4} \cdot \sqrt{3}[/tex]

Step-by-step explanation:

The details of the circle that has the shaded segment, and the segment are;

The radius of the circle, r = 3

The angle of the arc of the segment, θ = 120°

The area of a segment, A, is given as follows;

[tex]A = \dfrac{\theta}{360^{\circ}} \times \pi \times r^2 - \dfrac{1}{2} \times r^2 \times sin(\theta)[/tex]

The area of the given segment is therefore;

[tex]A = \dfrac{120^{\circ}}{360^{\circ}} \times \pi \times 3^2 - \dfrac{1}{2} \times 3^2 \times sin(120^{\circ}) = \dfrac{12\cdot \pi-9\cdot \sqrt{3} }{4} = 3\cdot \pi - (9/4)\cdot \sqrt{3}[/tex]