Respuesta :

1433 km

Explanation:

Let g' = the gravitational field strength at an altitude h

[tex]g' = G\dfrac{M_E}{(R_E + h)^2}[/tex]

We also know that g at the earth's surface is

[tex]g = G\dfrac{M_E}{R_E^2}[/tex]

Since g' = (2/3)g, we can write

[tex]G\dfrac{M_E}{(R_E + h)^2} = \dfrac{2}{3}\left(G\dfrac{M_E}{R_E^2} \right)[/tex]

Simplifying the above expression by cancelling out common factors, we get

[tex](R_E + h)^2 = \dfrac{3}{2} R_E^2[/tex]

Taking the square root of both sides, this becomes

[tex]R_E + h = \left(\!\sqrt{\dfrac{3}{2}}\right) R_E[/tex]

Solving for h, we get

[tex]h = \left(\!\sqrt{\dfrac{3}{2}} - 1\right) R_E= 0.225(6.371×10^2\:\text{km})[/tex]

[tex]\:\:\:\:\:= 1433\:\text{km}[/tex]