Respuesta :

Answer:

The volume is increasing at a rate of 33929.3 cubic millimeters per second.

Step-by-step explanation:

Volume of a sphere:

The volume of a sphere of radius r is given by:

[tex]V = \frac{4\pi r^3}{3}[/tex]

In this question:

We have to derivate V and r implicitly in function of time, so:

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

The radius of a sphere is increasing at a rate of 3 mm/s.

This means that [tex]\frac{dr}{dt} = 3[/tex]

How fast is the volume increasing when the diameter is 60 mm?

Radius is half the diameter, so [tex]r = 30[/tex]. We have to find [tex]\frac{dV}{dt}[/tex]. So

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

[tex]\frac{dV}{dt} = 4\pi (30)^2(3) = 33929.3[/tex]

The volume is increasing at a rate of 33929.3 cubic millimeters per second.