Answer:
[tex]G(y) = 4\ln(2y+1) - \frac{1}{2}\ln(y^2 + 1)[/tex]
Step-by-step explanation:
Given
[tex]G(y) = \ln(\frac{(2y+1)^4}{\sqrt{y^2 + 1}})[/tex]
Required
Rewrite as sum and difference
Apply laws of logarithm:
[tex]G(y) = \ln(2y+1)^4 - \ln({\sqrt{y^2 + 1})[/tex]
Rewrite the exponents
[tex]G(y) = \ln(2y+1)^4 - \ln(y^2 + 1)^\frac{1}{2}[/tex]
Convert exponents to coefficients
[tex]G(y) = 4\ln(2y+1) - \frac{1}{2}\ln(y^2 + 1)[/tex]