Respuesta :

Given:

Consider the below figure attached with this equation.

Quadrilateral QRST is a parallelogram.

To find:

The value of x.

Solution:

We know that the sum of two consecutive interior angles of a parallelogram is 180 degrees because they are supplementary angles.

In parallelogram QRST,

[tex]m\angle Q+m\angle T=180^\circ[/tex]

[tex](3x+5)^\circ+(9x-17)^\circ=180^\circ[/tex]

[tex](12x-12)^\circ=180^\circ[/tex]

On comparing both sides, we get

[tex]12x-12=180[/tex]

[tex]12x=180+12[/tex]

[tex]12x=192[/tex]

Divide both sides by 12.

[tex]x=\dfrac{192}{12}[/tex]

[tex]x=16[/tex]

Therefore, the value of x is 16.

Ver imagen erinna