Answer:
The smallest possible length is 0.83m
Step-by-step explanation:
Given
[tex]Volume = 565L[/tex]
Required
The smallest length of the tank
Since the tank is cubical, then the volume is:
[tex]Volume = Length^3[/tex]
This gives:
[tex]565L= Length^3[/tex]
Express as [tex]m^3[/tex]
[tex]\frac{565m^3}{1000} = Length^3[/tex]
[tex]0.565m^3 = Length^3[/tex]
Take cube roots of both sides
[tex]0.8267m = Length[/tex]
Rewrite as:
[tex]Length = 0.8267m[/tex]
Approximate
[tex]Length = 0.83m[/tex]