Respuesta :

Step-by-step explanation:

First let fully expand this equation

Use the product of squares method.

[tex](x - y) {}^{2} = {x}^{2} - 2xy + {y}^{2} [/tex]

[tex]x {}^{2} - 6x + 9[/tex]

Add like terms

[tex] {x}^{2} - 6x - 40[/tex]

First, let find the vertex.

[tex] - \frac{b}{2a} [/tex]

[tex] \frac{6}{2} = 3[/tex]

Plug this in to find the minimum point.

[tex] {3}^{2} - 6(3) - 40 = - 49[/tex]

So the minimum point is at (3,49).

Now we can find some zeroes.

Apply AC Method.

[tex](x - 10)(x + 4)[/tex]

Solve each equation for zero.

[tex]x = 10[/tex]

[tex]x = - 4[/tex]

So Graph points

(3,49)

(-4,0)

(10,0)