Step-by-step explanation:
First let fully expand this equation
Use the product of squares method.
[tex](x - y) {}^{2} = {x}^{2} - 2xy + {y}^{2} [/tex]
[tex]x {}^{2} - 6x + 9[/tex]
Add like terms
[tex] {x}^{2} - 6x - 40[/tex]
First, let find the vertex.
[tex] - \frac{b}{2a} [/tex]
[tex] \frac{6}{2} = 3[/tex]
Plug this in to find the minimum point.
[tex] {3}^{2} - 6(3) - 40 = - 49[/tex]
So the minimum point is at (3,49).
Now we can find some zeroes.
Apply AC Method.
[tex](x - 10)(x + 4)[/tex]
Solve each equation for zero.
[tex]x = 10[/tex]
[tex]x = - 4[/tex]
So Graph points
(3,49)
(-4,0)
(10,0)