Answer:
[tex](x-1)^2+(y+1)^2=\frac{1}{4}[/tex]
Step-by-step explanation:
The equation of a circle with center [tex](h,k)[/tex] and radius [tex]r[/tex] is given by [tex](x-h)^2+(y-k)^2=r^2[/tex].
What we're given:
Substituting given values, we get:
[tex](x-1)^2+(y-(-1))^2=\frac{1}{2}^2,\\\boxed{(x-1)^2+(y+1)^2=1/4}[/tex]