What conclusions can be made about the amount of money in each account if f represents Molly's account and g represents her brother's account?

Respuesta :

Answer:

(b) is true

Step-by-step explanation:

Given

Molly

[tex]a = 500[/tex] --- starting balance

[tex]m = 10[/tex] --- monthly rate

Her brother

[tex]a = 100[/tex] ---- starting balance

[tex]r = 10\%[/tex] --- annual rate

Required

Determine which option is true

First, we calculate her brother's function.

The function is an exponential function calculated as:

[tex]y = ab^x[/tex]

Where [tex]b = 1 + r[/tex]

So, we have:

[tex]y = ab^x[/tex]

[tex]y = 100 *(1 + 10\%) ^x[/tex]

[tex]y = 100 *(1 + 0.10) ^x[/tex]

[tex]y = 100 *(1.10) ^x[/tex]

Hence:

[tex]g(x) = 100 *(1.10) ^x[/tex]

Next, we calculate Molly's function (a linear function)

The monthly function is:

[tex]y = mx + a[/tex]

So, we have:

[tex]y = 10x + 500[/tex]

Annually, the function will be:

[tex]y = 10x*12 + 500[/tex]

[tex]y = 120x + 500[/tex]

So, we have:

[tex]f(x) = 120x + 500[/tex]

At this point, we have:

[tex]f(x) = 120x + 500[/tex] ---- Molly

[tex]g(x) = 100 *(1.10) ^x[/tex] ---- Her brother

Next, we test each option

(a): Molly's account will have a faster rate of change over [32,40]

We calculated Molly's function to be:

[tex]y = 120x + 500[/tex]

The slope of a linear function with the form: [tex]y = mx + b[/tex] is m

By comparison:

[tex]m = 120[/tex]

Since Molly's account is a linear function, the rate of change over any interval will always be the same; i.e.

[tex]m = 120[/tex]

For his brother:

Rate of change is calculated using:

[tex]m = \frac{g(b) - g(a)}{b - a}[/tex]

[tex]m = \frac{g(40) - g(32)}{40 - 32}[/tex]

[tex]m = \frac{g(40) - g(32)}{8}[/tex]

Calculate g(40) and g(32)

[tex]g(x) = 100 *(1.10) ^x[/tex]

[tex]g(40) = 100 * 1.10^{40} =4526[/tex]

[tex]g(32) = 100 * 1.10^{32} = 2111[/tex]

So, we have:

[tex]m = \frac{4526 - 2111}{8}[/tex]

[tex]m = \frac{2415}{8}[/tex]

[tex]m = 302[/tex]

By comparison: [tex]302 > 120[/tex]

Hence, her brother's account has a faster rate over [32,40]

(a) is false

(b): Molly's account will have a slower rate of change over [24,30]

[tex]m = 120[/tex] --- Molly's rate of change

For his brother:

[tex]m = \frac{g(b) - g(a)}{b - a}[/tex]

[tex]m = \frac{g(30) - g(24)}{30 - 24}[/tex]

[tex]m = \frac{g(30) - g(24)}{6}[/tex]

Calculate g(30) and g(24)

[tex]g(x) = 100 *(1.10) ^x[/tex]

[tex]g(40) = 100 * 1.10^{30} =1745[/tex]

[tex]g(32) = 100 * 1.10^{24} = 985[/tex]

So, we have:

[tex]m = \frac{g(30) - g(24)}{6}[/tex]

[tex]m = \frac{1745 - 985}{6}[/tex]

[tex]m = \frac{760}{6}[/tex]

[tex]m = 127[/tex]

By comparison: [tex]127 > 120[/tex]

Hence, Molly's account has a slower rate over [24,30]

(b) is false

(c): Molly's account will have a slower rate of change over [0,4]

[tex]m = 120[/tex] --- Molly's rate of change

For his brother:

[tex]m = \frac{g(b) - g(a)}{b - a}[/tex]

[tex]m = \frac{g(4) - g(0)}{4 - 0}[/tex]

[tex]m = \frac{g(4) - g(0)}{4}[/tex]

Calculate g(4) and g(0)

[tex]g(x) = 100 *(1.10) ^x[/tex]

[tex]g(4) = 100 * 1.10^4 =146[/tex]

[tex]g(0) = 100 * 1.10^{0} = 100[/tex]

So, we have:

[tex]m = \frac{g(4) - g(0)}{4}[/tex]

[tex]m = \frac{146 - 100}{4}[/tex]

[tex]m = \frac{46}{4}[/tex]

[tex]m = 11.5[/tex]

By comparison: [tex]120>11.5[/tex]

Hence, Molly's account has a faster rate over [0,4]

(c) is false

Ver imagen MrRoyal