Respuesta :

Answer:

(3/7)^7

Step-by-step explanation:

When multiplying exponents we can use the formula: a^m x a^n = a^m+n.

In this case, we can plug in 3/7 for a, and their respective exponents as m and n.

(3/7)^3 x (3/7)^4= (3/7)^3+4= (3/7)^7

Hope this helps!

:)

Answer:

[tex](\frac{3}{7})^7[/tex]

Step-by-step explanation:

[tex]Using \ formulas :\\ a^x \cdot a^y = a^{x+y}\\\\\frac{b^x}{b^y} = b^{x-y}\\\\(\frac{a}{b})^x = \frac{a^x}{b^x}[/tex]

[tex](\frac{3}{7})^3 \cdot (\frac{3}{7})^4 = \frac{3^3}{7^3} \cdot \frac{3^4}{7^4} = \frac{3^{3+4}}{7^{3+4}} = \frac{3^7}{7^7} = (\frac{3}{7})^7[/tex]