Which of the following equations is on the same path as x=2-3t, y=7-6t?
A. y=3-x
B. y=11+2x
C. y=3+2x
D. y=11-2x
E. y=3-2x

Respuesta :

Answer:

C. [tex]y = 3+2\cdot x[/tex]

Step-by-step explanation:

Let be the parametric equations [tex]x = 2-3\cdot t[/tex] and [tex]y = 7 - 6\cdot t[/tex], we need to clear [tex]t[/tex] and eliminate it afterwards to obtain a function of the form [tex]y = f(x)[/tex]:

[tex]x = 2 - 3\cdot t[/tex]

[tex]3\cdot t = 2 - x[/tex]

[tex]t = \frac{2}{3}-\frac{1}{3}\cdot x[/tex] (1)

[tex]y = 7 - 6\cdot t[/tex]

[tex]6\cdot t = 7 - y[/tex]

[tex]t = \frac{7}{6} - \frac{1}{6}\cdot y[/tex] (2)

By (1) and (2):

[tex]\frac{2}{3}-\frac{1}{3}\cdot x = \frac{7}{6}-\frac{1}{6}\cdot y[/tex]

[tex]4 -2\cdot x = 7 - y[/tex]

[tex]y = 3+2\cdot x[/tex]

Hence, the correct answer is C.