Answer:
2.55 m/s
Explanation:
A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30° as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp. Use energy methods to determine the speed of the crate at the bottom of the ramp.
Solution:
The work done by friction is given as:
[tex]W_f=F_f\Delta S\\\\Where\ F_f\ is\ the \ frictional\ force=-5N(the\ negative \ sign\ because\ it\\acts\ opposite\ to \ direction\ of\ motion),\Delta S=slope\ length=1\ m\\\\W_f=F_f\Delta S=-5\ N*1\ m=-5J[/tex]
The work done by gravity is:
[tex]W_g=F_g*s*cos(\theta)\\\\F_g=force\ due\ to\ gravity=mass*acceleration\ due\ to\ gravity=3\ kg*9.81\\m/s^2, s=1\ m, \theta=angle\ between\ force\ and\ displacement=90-30=60^o\\\\W_g=3\ kg*9.81\ m/s^2*1\ m*cos(60)=14.72\ J\\\\The\ Kinetic\ energy(KE)=W_f+W_g=14.72\ J-5\ J=9.72\ J\\\\Also, KE=\frac{1}{2} mv^2\\\\9.72=\frac{1}{2} (3)v^2\\\\v=\sqrt{\frac{2*9.72}{3} } =2.55\ m/s[/tex]