Respuesta :

Answer:

X1 = [tex]\frac{=15+\sqrt{285} }{6}[/tex] and X2 = [tex]\frac{-15-\sqrt{285} }{6}[/tex]

Step-by-step explanation:

To find the roots of a quadratic equation, you need to solve the quadratic equation by using the quadratic formula.

OR

You can use the (Equation/Function) mode on the calculator.

[tex]\frac{-b+-\sqrt{b^{2} -4ac } }{2a} x \neq 0[/tex]

For this equation,

a = 3

b = 15

c = -5

X1 = [tex]\frac{-15+\sqrt{15^{2} -4(3)(-5) } }{2(3)} x \neq 0[/tex]

X2 = [tex]\frac{-15-\sqrt{15^{2} -4(3)(-5) } }{2(3)} x \neq 0[/tex]

Solving this on the calculator and you should get

X1 = [tex]\frac{=15+\sqrt{285} }{6}[/tex] X2 = [tex]\frac{=15-\sqrt{285} }{6}[/tex]

a, b, c = constants, where a ≠ 0

x  = the unknown