contestada


The revenue for a business, as a function of units produced, s, is
shown below by R(x). C(x) represents the cost of producing x
units. Calculate the profit function and then determine how many
units must be produced for the business to make a profit of
$1680.
R(x) = 292
The revenue
function
The cost function
C(x) = 17x + 504

Respuesta :

Answer:

[tex]P(x) = - 17x-212[/tex] --- profit function

Step-by-step explanation:

Given

[tex]C(x) =17x + 504[/tex]

[tex]R(x) = 292[/tex]

Solving (a): The profit function

This is calculated as:

[tex]P(x) = R(x) - C(x)[/tex]

So, we have:

[tex]P(x) = 292 - 17x - 504[/tex]

[tex]P(x) = - 17x+292 - 504[/tex]

[tex]P(x) = - 17x-212[/tex]

Solving (b):Units to make 1680

[tex]P(x) = - 17x-212[/tex]

Substitute 1680 for P(x)

[tex]1680 = -17x - 212[/tex]

Collect like terms

[tex]17x= -1680 - 212[/tex]

[tex]17x= -1892[/tex]

Divide by 17

[tex]x= -111[/tex]

The question has incorrect details