Respuesta :

Answer:

Option 4

Step-by-step explanation:

Given function is,

[tex]f(x)=2\frac{1}{2}-3\frac{1}{3}x[/tex]

Steps to get the inverse of the given function,

Step 1,

Convert the function into equation,

[tex]y=2\frac{1}{2}-3\frac{1}{3}x[/tex]

Step 2,

Interchange the variables 'x' and 'y',

[tex]x=2\frac{1}{2}-3\frac{1}{3}y[/tex]

Step 3,

Solve the equation for the value of y,

[tex]x-2\frac{1}{2}=-3\frac{1}{3}y[/tex]

[tex]x-\frac{5}{2}=-\frac{10}{3}y[/tex]

[tex]-x+\frac{5}{2}=\frac{10}{3}y[/tex]

[tex]-3x+\frac{15}{2}=10y[/tex]

[tex]-\frac{3}{10}x+\frac{15}{20}=y[/tex]

[tex]y=-\frac{3}{10}x+\frac{3}{4}[/tex]

Step 4,

Convert the equation into inverse function,

[tex]f^{-1}x=-\frac{3}{10}x+\frac{3}{4}[/tex]

For x-intercepts,

Substitute y = 0,

[tex]0=-\frac{3}{10}x+\frac{3}{4}[/tex]

[tex]\frac{3}{10}x=\frac{3}{4}[/tex]

[tex]x=\frac{10}{4}[/tex]

[tex]x=\frac{5}{2}[/tex]

[tex]x=2\frac{1}{2}[/tex]

Therefore, x-intercept of the inverse function is [tex](2\frac{1}{2},0)[/tex].

Option 4 will be the answer.