Respuesta :

Answer:

Lets choose y

  • -8y=3x-24
  • y=-3/8x+3

Plug in

  • 3x+15/8x-15=45
  • 39/8x= 60
  • x=480/39

Answer:

I'll choose 'x' variable first to eliminate because -

  • -3 (coefficient of 'x' in Eqn.1)  & 3 (coefficient of 'x' in Eqn.2) are additive inverses of each other , so they can be easily eliminated by simply adding those equations.
  • It can be also solved by using elimination method but you'll need to multiply -1 with either Eqn.1 or Eqn.2 because in elimination method , a variable can be eliminated only when their coefficients are numerically equal (along with their sign).

Step-by-step explanation:

Eqn.1 → -3x - 8y = -24

Eqn.2 → 3x - 5y = 45

If we'll add both the equations , then '3x' would be getting cancelled first.

⇒ [tex](-3x - 8y) + (3x - 5y) = (-24) + (45)[/tex]

⇒ [tex]3x - 3x - 8y - 5y = 45 - 24[/tex]

⇒ [tex]-13y = 21[/tex]

⇒ [tex]y = \frac{-21}{13}[/tex]

Putting the value of y in eqn.2 ,

⇒ [tex]3x - 5(\frac{-21}{13}) = 45[/tex]

⇒ [tex]3x + \frac{105}{13} = 45[/tex]

⇒ [tex]3x = 45 - \frac{105}{13}[/tex]

⇒ [tex]3x = \frac{585 - 105}{13} = \frac{480}{13}[/tex]

⇒ [tex]x = \frac{480}{13 \times 3} = \frac{480}{39}[/tex]

Reducing the fraction gives ,

⇒ [tex]x = \frac{160}{13}[/tex]