Respuesta :

Answer:

f / 8

Explanation:

The f-number is the ratio of the lens's focal length to its diameter and is a measure of the intensity of the light reaching the CCD. The smaller the greater the intensity of the light

           I = D / f

           f-number = f / D

           I = 1 / f-number

the energy deposited in the CCD is proportional to the intensity of the light and the exposure time (Δt)

          E = I Δt

          E = 1 /f-number   Δt

in the exercise they indicate that the system is well exposed (the image is sharp and clear) for fo-number = f / 16

        Δt = exposure time = 1/120 s

        E =   [tex]\frac{1}{120} \ \ \frac{1}{fo-number}[/tex]  

           

indicate that the exposure time has been changed to Δt = 1/60 s, which should be the f₁-number

        E = [tex]\frac{1}{60} \ \ \frac{1}{f_1-number}[/tex]

the energy deposited must be the same per location we can equal the expressions

          [tex]\frac{1}{120} \ \frac{1}{f_o-number} = \frac{1}{60} \ \frac{1}{f_1-number}[/tex]

         f₁-number = [tex]\frac{60}{120} \ \ \frac{1}{fo-number}[/tex]

         

         f₁-number = ½  16

         f₁-number  = 8

so the system should be set to f / 8