A pressure of 7x10^5N/m is applied to all surfaces of a copper cube (of sides 25 cm) what is the fractional change in volume of a cube? ( for copper B= 14x10^10N/m)

Respuesta :

Answer:

The correct solution is "[tex]5\times 10^{-4}[/tex] %".

Explanation:

The given values are:

Pressure,

[tex]\Delta P=7\times 10^5 \ N/m[/tex]

for copper,

[tex]B=14\times 10^{10} \ N/m[/tex]

As we know,

The Bulk Modulus (B) = [tex]\frac{\Delta P}{-\frac{\Delta V}{V} }[/tex]

or,

The decrease in volume will be:

= [tex](\frac{\Delta V}{V})\times 100 \ percent[/tex]

then,

= [tex]\frac{\Delta P}{B}\times 100 \ percent[/tex]

On putting the values, we get

= [tex]\frac{7\times 10^5}{14\times 10^{10}}\times 100 \ percent[/tex]

= [tex]5\times 10^{-4} \ percent[/tex]