Answer:
[tex]P(3\ or\ c) = 0.45[/tex]
Step-by-step explanation:
Given
See attachment for spinner
Required
[tex]P(3\ or\ c)[/tex]
From the first spinner, we have:
[tex]S = \{1,2,3,4,5\}[/tex] --- Sample Space
[tex]n(S)=5[/tex]
So, P(3) is:
[tex]P(3) = \frac{n(3)}{n(S)}[/tex]
[tex]P(3) = \frac{1}{5}[/tex]
[tex]P(3) = 0.20[/tex]
From the second spinner, we have:
[tex]S = \{a,b,c,d\}[/tex]
[tex]n(S) = 4[/tex]
So, P(c) is:
[tex]P(c) = \frac{n(c)}{n(S)}[/tex]
[tex]P(c) = \frac{1}{4}[/tex]
[tex]P(c) = 0.25[/tex]
The required probability is then calculated as:
[tex]P(3\ or\ c) = P(3) + P(c)[/tex]
[tex]P(3\ or\ c) = 0.20 + 0.25[/tex]
[tex]P(3\ or\ c) = 0.45[/tex]