Respuesta :

Answer:

[tex]P(3\ or\ c) = 0.45[/tex]

Step-by-step explanation:

Given

See attachment for spinner

Required

[tex]P(3\ or\ c)[/tex]

From the first spinner, we have:

[tex]S = \{1,2,3,4,5\}[/tex] --- Sample Space

[tex]n(S)=5[/tex]

So, P(3) is:

[tex]P(3) = \frac{n(3)}{n(S)}[/tex]

[tex]P(3) = \frac{1}{5}[/tex]

[tex]P(3) = 0.20[/tex]

From the second spinner, we have:

[tex]S = \{a,b,c,d\}[/tex]

[tex]n(S) = 4[/tex]

So, P(c) is:

[tex]P(c) = \frac{n(c)}{n(S)}[/tex]

[tex]P(c) = \frac{1}{4}[/tex]

[tex]P(c) = 0.25[/tex]

The required probability is then calculated as:

[tex]P(3\ or\ c) = P(3) + P(c)[/tex]

[tex]P(3\ or\ c) = 0.20 + 0.25[/tex]

[tex]P(3\ or\ c) = 0.45[/tex]

Ver imagen MrRoyal