Respuesta :

Answer:

x = 11, y = 22

Step-by-step explanation:

Using the tangent ratio in the right triangle and the exact value

tan60° = [tex]\sqrt{3}[/tex] , then

tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{11\sqrt{3} }{x}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by x )

11[tex]\sqrt{3}[/tex]  = x × [tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

11 = x

Using Pythagoras' identity in the right triangle

y² = x² + (11[tex]\sqrt{3}[/tex] )² = 11² + 363 = 121 + 363 = 484 ( square root of both sides )

y = [tex]\sqrt{484}[/tex] = 22