find YZ pls fast correct

Answer:
Step-by-step explanation:
According to intersecting chords theorem:
Find the value of YZ:
[tex]\huge\text{Hey there!}[/tex]
[tex]\large\textsf{21(2x - 6) = 30(x + 1)}[/tex]
[tex]\large\textsf{21(2x) + 21(-6) = 30(x) + 30(1)}[/tex]
[tex]\large\textsf{21(2x) = 42x}[/tex]
[tex]\large\textsf{21(-6) = -126}[/tex]
[tex]\large\textsf{30(x) = 30x}[/tex]
[tex]\large\textsf{30(1) = 30}[/tex]
[tex]\large\textsf{42x - 126 = 30x + 30}[/tex]
[tex]\large\text{Put ALL your LIKE TERMS TOGETHER}[/tex]
[tex]\large\text{NEW EQUATION: \textsf {42x - 30x = 126 + 30}}[/tex]
[tex]\large\textsf{42x - 30x = 12x}[/tex]
[tex]\large\textsf{126 + 30 = 156}[/tex]
[tex]\large\text{NEW EQUATION: \textsf{12x = 156}}[/tex]
[tex]\large\text{DIVIDE 12 to BOTH SIDES}[/tex]
[tex]\mathsf{\dfrac{12x}{12}=\dfrac{156}{12}}[/tex]
[tex]\large\text{CANCEL out: } \mathsf{\dfrac{12}{12}}\large\text{ because that gives you 1}[/tex]
[tex]\large\text{KEEP: }\mathsf{\dfrac{156}{12}}\large\text{ because that helps you solve for your the given equation} \\\\\large\text{and your YZ result}[/tex]
[tex]\mathsf{\dfrac{156}{12}=\bf 13}[/tex]
[tex]\large\text{NEW and FINAL EQUATION: \textsf{30 + 1 + 13}}[/tex]
[tex]\large\textsf{30 + 1 + 13}[/tex]
[tex]\large\textsf{30 + 1 = \bf 31}[/tex]
[tex]\large\textsf{= 31 + 13}[/tex]
[tex]\large\textsf{= \bf 44}[/tex]
[tex]\boxed{\boxed{\large\textsf{Answer: \huge \bf YZ = 44 }}}\huge\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]