NEED The FULL equation. Will give Brainly. Thank you!

Answer:
[tex] \displaystyle \sf h( - 1) = - \frac{ 2}{3} [/tex]
Step-by-step explanation:
we are given a function
[tex] \displaystyle \sf h(x) = \frac{2x - 6}{4 {x}^{2} + 8} [/tex]
we would like to simplify it for h(-1)
in order to do so
substitute the value of x
[tex] \displaystyle \sf h( - 1) = \frac{2 \cdot - 1- 6}{4 { (- 1)}^{2} + 8} [/tex]
by order of PEMDAS
simplify square:
[tex] \displaystyle \sf h( - 1) = \frac{2 \cdot - 1- 6}{4 { ( 1)}^{} + 8} [/tex]
simplify multiplication:
[tex] \displaystyle \sf h( - 1) = \frac{ - 2 - 6}{4 { }^{} + 8} [/tex]
simplify addition:
[tex] \displaystyle \sf h( - 1) = \frac{ - 2 - 6}{12} [/tex]
simplify subtraction:
[tex] \displaystyle \sf h( - 1) = \frac{ - 8}{12} [/tex]
reduce fraction:
[tex] \displaystyle \sf h( - 1) = - \frac{ 2}{3} [/tex]