Respuesta :

Nayefx

Answer:

[tex] \displaystyle \sf h( - 1) = - \frac{ 2}{3} [/tex]

Step-by-step explanation:

we are given a function

[tex] \displaystyle \sf h(x) = \frac{2x - 6}{4 {x}^{2} + 8} [/tex]

we would like to simplify it for h(-1)

in order to do so

substitute the value of x

[tex] \displaystyle \sf h( - 1) = \frac{2 \cdot - 1- 6}{4 { (- 1)}^{2} + 8} [/tex]

by order of PEMDAS

simplify square:

[tex] \displaystyle \sf h( - 1) = \frac{2 \cdot - 1- 6}{4 { ( 1)}^{} + 8} [/tex]

simplify multiplication:

[tex] \displaystyle \sf h( - 1) = \frac{ - 2 - 6}{4 { }^{} + 8} [/tex]

simplify addition:

[tex] \displaystyle \sf h( - 1) = \frac{ - 2 - 6}{12} [/tex]

simplify subtraction:

[tex] \displaystyle \sf h( - 1) = \frac{ - 8}{12} [/tex]

reduce fraction:

[tex] \displaystyle \sf h( - 1) = - \frac{ 2}{3} [/tex]