contestada

D varies as R and S, and inversely as t. D=12, R=3, S=20, and t=5, find D when R=15, S=4 and t=8.

Respuesta :

Given:

D varies as R and S, and inversely as t.

D=12, R=3, S=20, and t=5

To find:

The value of D when R=15, S=4 and t=8.

Solution:

It is given that D varies as R and S, and inversely as t. So,

[tex]D\propto \dfrac{RS}{t}[/tex]

[tex]D=\dfrac{kRS}{t}[/tex]                ...(i)

Where, k is the constant of proportionality.

We have, D=12, R=3, S=20, and t=5. Substituting these values in (i), we get

[tex]12=\dfrac{k(3)(20)}{5}[/tex]

[tex]12=12k[/tex]

[tex]\dfrac{12}{12}=k[/tex]

[tex]1=k[/tex]

Substituting [tex]k=1[/tex] in (i), we get the required equation.

[tex]D=\dfrac{(1)RS}{t}[/tex]

[tex]D=\dfrac{RS}{t}[/tex]

We need to find D when R=15, S=4 and t=8. Substituting R=15, S=4 and t=8 in the above equation, we get

[tex]D=\dfrac{(15)(4)}{8}[/tex]

[tex]D=\dfrac{60}{8}[/tex]

[tex]D=7.5[/tex]

Therefore, the required value of D is 7.5.