Some of the steps for completing the square to solve

x2 + 5x = 2 are shown.


x2 + 5x = 2


x2 + 5x + (StartFraction 5 Over 2 EndFraction) squared = 2 + (StartFraction 5 Over 2 EndFraction) squared


(x + StartFraction 5 Over 2 EndFraction) squared = StartFraction 33 Over 4 EndFraction


Which are solutions of x2 + 5x = 2?

Respuesta :

Given:

The equation is:

[tex]x^2+5x=2[/tex]

To find:

The solution of the given equation by completing the square.

Solution:

We have,

[tex]x^2+5x=2[/tex]

We need to add the square of half of the coefficient of x on both sides.

Adding [tex]\left(\dfrac{5}{2}\right)^2[/tex] on both sides, we get

[tex]x^2+5x+\left(\dfrac{5}{2}\right)^2=2+\left(\dfrac{5}{2}\right)^2[/tex]

[tex]\left(x+\dfrac{5}{2}\right)^2=2+\dfrac{25}{4}[/tex]

[tex]\left(x+\dfrac{5}{2}\right)^2=\dfrac{8+25}{4}[/tex]

[tex]\left(x+\dfrac{5}{2}\right)^2=\dfrac{33}{4}[/tex]

Taking square root on both sides, we get

[tex]x+\dfrac{5}{2}=\pm \sqrt{\dfrac{33}{4}}[/tex]

[tex]x=\pm \dfrac{\sqrt{33}}{2}-\dfrac{5}{2}[/tex]

[tex]x=\dfrac{\pm \sqrt{33}-5}{2}[/tex]

[tex]x=\dfrac{\sqrt{33}-5}{2}[/tex] and [tex]x=\dfrac{-\sqrt{33}-5}{2}[/tex]

Therefore, the solutions of the given equation are [tex]x=\dfrac{\sqrt{33}-5}{2}[/tex] and [tex]x=\dfrac{-\sqrt{33}-5}{2}[/tex].

Answer: d and e

Step-by-step explanation:

edge 2021 :)