According to integration by parts method, ?f(x).g(x).dx is equal to:
A. f(x).?g(x).dx – ?(f?(x).?g(x).dx).dx
B. f(x).?g(x).dx + ?(f?(x).?g(x).dx).dx
C. - f(x).?g(x).dx–?(f?(x).?g(x).dx).dx
D. -f(x).?g(x).dx+?(f?(x).?g(x).dx).dx

Respuesta :

Answer:

B is the answer

Step-by-step explanation:

[tex]f(x).?g(x).dx[/tex] + [tex]?(f?(x).?g(x).dx).dx[/tex] = [tex]?f(x).g(x).dx[/tex]

Hoped this helped.

The integral expression of the form ∫ f(x) · dg is equal to the composite expression f(x) · g(x) - ∫ g(x) df by applying integration by parts method. (Correct choice: A)

How to derive the rule of integration by parts

In this question we must derive a integration rule for the product of two functions that are integrable. The integration by parts method is inspired on the differentiation rule for the product of two differentiable functions, whose definition is shown below:

[tex]\frac{d}{dx} [f(x)\cdot g(x)] = f'(x) \cdot g(x) + f(x)\cdot g'(x)[/tex]    (1)

If we integrate and used integral Calculus theorem on both sides of (1), then we have the following expression:

f(x) · g(x) = ∫ g(x) · df + ∫ f(x) · dg

∫ f(x) · dg = f(x) · g(x) - ∫ g(x) df    

Therefore, the integral expression of the form ∫ f(x) · dg is equal to the composite expression f(x) · g(x) - ∫ g(x) df by applying integration by parts method. (Correct choice: A)

To learn more on integration by parts, we kindly invite to check this verified question: https://brainly.com/question/14402892