The table is an illustration of mean value theorem
[tex]\mathbf{f'(c) =2}[/tex] on the interval (8,12)
If a function is differentiable, then:
[tex]\mathbf{f'(c) =\frac{f(b) - f(a)}{b - a}}[/tex]
(a) (0,4)
This gives
[tex]\mathbf{f'(c) =\frac{f(4) - f(0)}{4 - 0}}[/tex]
[tex]\mathbf{f'(c) =\frac{f(4) - f(0)}{4}}[/tex]
From the table, we have:
[tex]\mathbf{f'(c) =\frac{0 - 8}{4}}[/tex]
[tex]\mathbf{f'(c) =\frac{- 8}{4}}[/tex]
[tex]\mathbf{f'(c) =-2}[/tex]
(b) (4,8)
This gives
[tex]\mathbf{f'(c) =\frac{f(8) - f(4)}{8 - 4}}[/tex]
[tex]\mathbf{f'(c) =\frac{f(8) - f(4)}{4}}[/tex]
From the table, we have:
[tex]\mathbf{f'(c) =\frac{2-0}{4}}[/tex]
[tex]\mathbf{f'(c) =\frac{2}{4}}[/tex]
[tex]\mathbf{f'(c) =\frac{1}{2}}[/tex]
(c) (8,12)
This gives
[tex]\mathbf{f'(c) =\frac{f(12) - f(8)}{12 - 8}}[/tex]
[tex]\mathbf{f'(c) =\frac{f(12) - f(8)}{4}}[/tex]
From the table, we have:
[tex]\mathbf{f'(c) =\frac{10-2}{4}}[/tex]
[tex]\mathbf{f'(c) =\frac{8}{4}}[/tex]
[tex]\mathbf{f'(c) =2}[/tex]
Hence, [tex]\mathbf{f'(c) =2}[/tex] on the interval (8,12)
Read more about mean value theorems at:
https://brainly.com/question/3957181