Respuesta :

Question:-

Find the coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3 ?

Solution:-

Let the given points be A(-1,7) and B(4,-3)

Now,

Let the point be P(x, y) which divides AB in the ratio 2:3

Here,

[tex] { \bf x \: = \frac{m_1 x_2 \: + \: m_1 x_1}{m_1 \: + \: m_2}} [/tex]

Where,

[tex] m_1 [/tex] = 2 , [tex] m_2 [/tex] = 3

[tex] x_1 [/tex] = -1 , [tex] x_2 [/tex] = 4

[tex] \therefore [/tex] Putting values we get,

x = [tex] \frac{2 \: × \: 4 \: + \: 3 \: × \: -1}{2 \: + \: 3} [/tex]

x = [tex] \frac{8 \: - \: 3}{5} [/tex]

x = [tex] \frac{5}{5} [/tex]

x = 1

Now,

Finding y

[tex] { \bf y \: = \frac{m_1 y_2 \: + \: m_2 y_1}{m_1 \: + \: m_2}} [/tex]

Where,

[tex] m_1 [/tex] = 2 , [tex] m_2 [/tex] = 3

[tex] x_1 [/tex] = 7 , [tex] x_2 [/tex] = -3

[tex] \therefore [/tex] Putting values we get,

y = [tex] \frac{2 \: × \: -3 \: + \: 3 \: × \: 7}{2 \: + \: 3} [/tex]

y = [tex] \frac{-6 \: + \: 21}{5} [/tex]

y = [tex] \frac{15}{5} [/tex]

y = 3

Hence x = 1, y = 3

So, the required point is P(x, y)

= P(1, 3)

The coordinates of the point is P(1, 3). [Answer]

_______________________________________

Note:- Refer the attachment.

_______________________________________

Ver imagen TheCutePrincess