Respuesta :

Answer:

[tex]y = 4*5^x[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (-3,\frac{4}{125})[/tex]

[tex](x_2,y_2) = (1,20)[/tex]

Required

Determine the exponential equation

An exponential equation is of the form: [tex]y = ab^x[/tex]

In: [tex](x_2,y_2) = (1,20)[/tex]

[tex]20 = ab^1[/tex]

[tex]20 = ab[/tex] ---- (1)

In: [tex](x_1,y_1) = (-3,\frac{4}{125})[/tex]

[tex]\frac{4}{125} = ab^{-3}[/tex] --- (2)

Divide (1) by (2)

[tex]20/\frac{4}{125} = \frac{ab}{ab^{-3}}[/tex]

[tex]20/\frac{4}{125} = b^4[/tex]

[tex]20*\frac{125}{4} = b^4[/tex]

[tex]5*125 = b^4[/tex]

[tex]625 = b^4[/tex]

Take 4th roots of both sides

[tex]\sqrt[4]{625} = b[/tex]

[tex]5 = b[/tex]

[tex]b = 5[/tex]

Substitute [tex]b = 5[/tex] in [tex]20 = ab[/tex]

[tex]20 = a * 5[/tex]

Solve for a

[tex]a = 20/5[/tex]

[tex]a = 4[/tex]

Hence, the equation is:

[tex]y = 4*5^x[/tex]