Simplify the sum. State any restrictions on the variables.

X-2/x+3 + 10x/(x^2)-9

Please show all work and don’t forget the restrictions!

Respuesta :

Remove ( ), factor, least common multi of, adjust, expand, answers is : X^2-15x+6 / (x+3)(x-3)

The resulting expression will be [tex]\frac{x+2}{x-3}\\[/tex]

How to simplify fractional sum

Given the expression as shown in the question:

[tex]\frac{x-2}{x+3} + \frac{10x}{x^2-9}[/tex]

Find the LCM of the expression to have:

[tex]\frac{(x-2)(x-3)+10x}{(x+3)(x-3)}[/tex]

Expand the expression

[tex]\frac{(x^2 - 5x+6+10x}{(x+3)(x-3)}\\\frac {x^2 + 5x+6}{(x+3)(x-3)}\\[/tex]

Expand the expression

[tex]=\frac {x^2 + 2x + 3x +6}{(x+3)(x-3)}\\=\frac {x(x + 2) + 3(x +2)}{(x+3)(x-3)}\\=\frac{(x+2)(x+3)}{(x+3)(x-3)}\\ =\frac{x+2}{x-3}\\[/tex]

Hence the resulting expression will be [tex]\frac{x+2}{x-3}\\[/tex]

Learn more on expansion here: https://brainly.com/question/52825