A large tank is filled to capacity with 300 gallons of pure water. Brine containing 5 pounds of salt per gallon is pumped into the tank at a rate of 3 gal/min. The well-mixed solution is pumped out at a rate of 6 gals/min. Find the number A(t) of pounds of salt in the tank at time t. A(t) = 1500(1−e−0.02t) lb How long (in minutes) will it take for the tank to be empty after this process has started? min

Respuesta :

Answer:

(a) [tex]A = 1500(1 - e^{-0.01t})[/tex]

(b) [tex]t = 0[/tex]

Step-by-step explanation:

Given

[tex]V= 300gal[/tex] --- Volume of tank

[tex]B = 5lb/gal[/tex] --- Brine solution

[tex]R_1 = 3gal/min[/tex]  --- Rate in, in gallon/min

[tex]R_2 = 6gal/min[/tex] --- Rate out, in gallon/min

Required

Determine A(t)

First, calculate the rate in (R in) and (R out) in lb/min

[tex]R_{in} = B * R_1[/tex]

[tex]R_{in} = 5lb/gal * 3gal/min[/tex]

[tex]R_{in} = 15lb/min[/tex]

R(out) is calculated by multiply the rate at which brine leaves the tank (lb/gal) * R2

So, we have:

[tex]R_{out} = \frac{A(t)}{300} lb/gal * 3gal/min[/tex]

[tex]R_{out} = \frac{3*A(t)}{300} lb/min[/tex]

[tex]R_{out} = \frac{A(t)}{100} lb/min[/tex]

The change in the amount of brin e in the tank at time t is given as:

[tex]A'(t) = R_{in} - R_{out}[/tex]

[tex]A'(t) = 15 - \frac{A(t)}{100}[/tex]

Rewrite:

[tex]\frac{dA}{dt} = 15 - \frac{A}{100}[/tex]

Multiply through by dt

[tex]dA = [15 - \frac{A}{100}]* dt[/tex]

Make dt stand alone

[tex]\frac{dA}{15 - \frac{A}{100}} = dt[/tex]

[tex]ln|15 - \frac{A}{100}| = -0.01t + ln\ c[/tex]

Express as exponents

[tex]15 - \frac{A}{100} = ce^{-\frac{t}{100}}[/tex]

Multiply through by 100

[tex]1500 - A = 100ce^{-\frac{t}{100}}[/tex]

[tex]A = 1500 - 100ce^{-\frac{t}{100}}[/tex]

[tex]A = 1500 - 100ce^{-0.01t}[/tex]

Apply initial conditions

[tex]A(0) = 0[/tex]

Substitute 0 for t in: [tex]A = 1500 - 100ce^{-0.01t}[/tex]

[tex]0 = 1500 - 100ce^{-0.01*0}[/tex]

[tex]0 = 1500 - 100ce^{0}[/tex]

[tex]0 = 1500 - 100c[/tex]

[tex]100c = 1500[/tex]

[tex]c = 15[/tex]

Substitute 15 for c in [tex]A = 1500 - 100ce^{-0.01t}[/tex]

[tex]A = 1500 - 100*15e^{-0.01t}[/tex]

[tex]A = 1500 - 1500e^{-0.01t}[/tex]

Factorize:

[tex]A = 1500(1 - e^{-0.01t})[/tex]

How long to empty the tank

Set A to 0

[tex]1500(1 - e^{-0.01t}) = 0[/tex]

Divide through by 1500

[tex]1 - e^{-0.01t} = 0[/tex]

Collect Like Terms

[tex]e^{-0.01t} = 1[/tex]

Take ln of both sides

[tex]ln\ (e^{-0.01t}) = ln\ 1[/tex]

[tex]-0.0t = 0[/tex]

[tex]t = 0[/tex]